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Abstract 

Formal comparisons of delay discounting models have been conducted using data from humans, with 

only one study comparing delay discounting data by controls and pathological gamblers. This is the first 

study using data from nonhuman animals to compare models of intertemporal choice.  For each model 

fitting the impulsive choices of Lewis (LEW) and Fischer (F344) rats, the Akaike’s (1973) information 

criterion (AIC) and its corresponding AIC weight were computed.  The main goal was to show that AIC 

weights are easy to compute and simplify the interpretation of results generated by single-parameter and 

dual-parameter models of intertemporal choice. Segments of a published data set (Aparicio, Elcoro, & 

Alonso-Alvarez, 2015) were used to compare five models of intertemporal choice.  All models nicely fitted 

the data of the LEWs and F344s at the group and individual levels of analysis.  Formal comparisons based 

on AIC weights, evidence ratios of Aikaike weights, and normalized probabilities revealed that Mazur’s 

(1987) hyperbolic-decay model is the best and most parsimonious model fitting the group and individual 

data from LEWs and F344s, followed by Samuelson’s (1937) exponential discounted utility function.   
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Resumen 

Comparaciones formales entre modelos de elección inter-temporal han usado datos de humanos y solo 

hay un estudio en el que jugadores compulsivos fueron comparados con un grupo control.  Este estudio 

es el primero que utiliza datos de animales para comparar modelos de elección inter-temporal.  Para cada 

modelo que ajustó datos de las elecciones impulsivas de las ratas Lewis (LEW) y Fischer 344 (F344), se 

calculó el criterio de información de Aikake (AIC; 1973) y su peso respectivo.  El objetivo fue mostrar que 

el peso del AIC es fácil de computar y simplifica la interpretación de los resultados generados por modelos 

de elección inter-temporal que estiman uno o dos parámetros libres para ajustar los datos.  Utilizando 

segmentos de datos publicados (Aparicio, Elcoro, & Alonso-Álvarez, 2015), se hicieron comparaciones 

entre cinco modelos de elección inter-temporal.  A niveles de análisis de grupo e individuo, todos los 

modelos ajustaron los datos de las ratas LEW and F344. Comparaciones formales basadas en pesos del 

AIC, razón de proporción y probabilidad normalizada mostraron que el mejor y más parsimonioso 

modelo para ajustar los datos de individuos y grupos de ratas LEW y F344 es el modelo hiperbólico de 

descuento temporal de Mazur (1987), seguido por el modelo de descuento de utilidad temporal de 

Samuelson (1937).  

Palabras clave: Modelos, elección inter-temporal, Lewis, Fischer 344, peso de AIC, ratas. 

 

Choices between consequences separated in time (intertemporal choice) are faced every day by 

humans and nonhuman animals in a variety of settings, attracting the attention of research in economics 
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(Frederick, Loewenstein, & O’Donoghue, 2002), cognitive neuroscience (Peters & Buchel, 2011; Sellitto, 

Giaramelli, & di Pellegrino, 2011), and psychology (Green & Myerson, 2004).  In this research, the term 

delay discounting refers to the phenomenon that humans and nonhuman animals discount the value of 

reinforcers over time (Miedl, Peters, & Buchel, 2012).  For example, in situations arranging a choice 

between two reinforcers differing in amount and delay, subjects choose the smaller-sooner reinforcer 

(SSR) even when it has lower objective value than the larger-later reinforcer (LLR).  Similarly, in choice 

situations arranging two reinforcers differing in probability, subjects choose the more certain reinforcer 

discounting the value of the less certain reinforcer (e.g., Green & Myerson, 2004; McKerchar, Green, 

Myerson, Pickford, Hill, & Stout, 2009).  

Models of delay discounting estimate the shape of the discounting function relating the value of 

reinforcer to delay (Killeen, 2009; Rachlin, 2006), or connecting it to the inter-reinforcer-interval (Green, 

Myerson, & Macaux, 2005; Kable & Glimcher, 2010).  To measure quantitative aspects of the discounting 

function, researchers use procedures adjusting the time to the LLR or the amount of the SSR (e.g., Green, 

Myerson, Shah, Estle, & Holt, 2007; Mazur, 1987; Rachlin, Raineri, & Cross, 1991).  In these procedures, 

the degree to which the value of reinforcers decays with increasing delay is well described by Mazur’s 

(1987) hyperbolic-decay model as follows: 

V =
A

1+ kD
 (1) 

Where V is the reinforcer value, A is reinforcer amount, D is the reinforcer delay, and k is a free 

parameter estimating how fast the value of the LLR decays with increasing D.  The hyperbolic-decay 

model accurately describes data obtained from humans (e.g., Myerson & Green, 1995; Rachlin, et al., 

1991) and nonhuman animals (e.g., Aparicio, Hughes, & Pitts, 2013; Farrar, Kieres, Hausknecht, de Wit, 

& Richards, 2003; Green, et al., 2007; Helms, Reeves, & Mitchell, 2006; Madden, Bickel, & Jacobs, 1999; 

Mazur, 2012; Richards, Mitchell, De Wit, & Seiden, 1997; Stein, Pinkston, Brewer, Francisco, & Madden, 

2012; Woolverton, Myerson, & Green, 2007), and it does so with a single free parameter (k).   

The hyperbolic-decay model, however, estimates the degree of discounting as a function of the 

delay, showing that the discounting of the LLR is steeper in the intervals of the near future than in those 

of the far future.  This phenomenon termed decreasing impatience (Ebert & Prelec, 2007) is at odds with 

Samuelson’s (1937) exponential discounted utility model sustaining that the effect of a given delay is 

autonomous of the point in time when it occurs, formally expressed as follows: 

               (2) 

Equation 2 predicts time-consistent preferences or normative exponential discounting.  Evidence 

against this prediction comes from studies showing preference reversals or time-inconsistent preferences 

in humans and nonhuman animals (Ainslie & Haendel, 1983; Green, Fisher, Perlow & Sherman, 1981; 

Green, Fry, & Myerson, 1994).  This phenomenon has been termed dynamic inconsistency (Thaler, 1981), 

the common difference (Lowenstein, & Prelec, 1992), or non-stationary effect (Miedl, et al., 2012).   

When goodness of fit is used to compare and contrast Equations 1 and 2, R2 values show that the 

former model accounts for a greater proportion of variance than the latter (Green & Myerson, 2004; 

Kable, & Glimcher, 2010; McKerchar et al., 2009; Myerson & Green, 1995; Yi, Landes, & Bickel, 2009).  

The problem with Equation 1 is that it tends to over-estimate discounted values at short delays and under-

estimate discounted values at long delays, generating poor fits (low values of R2) to data of delay 

discounting from humans (Green & Myerson, 2004; McKerchar et al., 2009; Odum, Baumann, & 
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Rimington, 2006).  To account for a greater proportion of the variance, some researchers expand criteria 

to exclude problematic datasets (Johnson & Bickel, 2008).  Others claim that more than one parameter is 

required to adequately describe delay discounting in humans (McKerchar et al., 2009; Takahashi, Oono, & 

Radford, 2008).  As a result, more flexible models of delay discounting have been proposed (Bleichrodt, 

Rohde, & Wakker, 2009).  One alternative to Equations 1 and 2 is Myerson and Green’s (1995) 

hyperboloid model: 

skD

A
V

)1( 
    (3) 

Equation 3 raises the denominator to a power s, representing a special case of the generalized 

hyperbola (Loewenstein & Prelec, 1992).  It has two free parameters, one to estimate the rate of 

discounting (k) and a second free parameter (s) estimating individual differences in the scaling of delay 

and/or amount (e.g., Green, et al., 1994; Myerson & Green, 1995).  With two free parameters, the 

hyperboloid model adequately describes discounting in humans accounting for more proportion of the 

variance than Equation 1 (e. g., Green, Myerson, & Ostaszewski, 1999; Myerson & Green, 1995; Simpson 

& Vuchinich, 2000).  The complexity of the hyperboloid model (i.e., using two instead of one free 

parameter) is justified by showing that the free parameter s deviates significantly from 1.0 when describing 

discounting in humans (Myerson & Green, 1995; McKerchar et al., 2009).    

A different two-free-parameter discounting model is Rachlin’s (2006) power function of 

hyperbolic discounting:  

)1( skD

A
V


     (4) 

It raises only D to a power of s, corresponding to hyperbolic discounting with power-scaling of 

objective time (McKerchar, Green, & Myerson, 2010).  Equation 4 was derived from Stevens’s (1957) 

psychophysical power law and is comparable to Mazur’s (1987) hyperbolic-decay model; it fits the data of 

delay, probability, and memory discounting.  Rachlin (2006) asserted that the power function of 

hyperbolic discounting is consistent with the generalized matching law (Baum, 1974), maximizing 

accounts of choice (Rachlin, Green, Kagel, & Batalio, 1976), and common utility functions assuming 

constant elasticity of substitution (Kagel, Batalio, & Green, 1995).  Equation 4 is said to be a special 

instance of an early discounting-by-intervals function giving 0-s delay to the SSR (Read, 2001).  It has, 

however, the same limitation that Equation 3, that is, Equation 4 can’t explain preference reversals or time 

inconsistence preferences.  

In order to account for time-inconsistent preferences (Ainslie & Haendel, 1983; Green et al., 

1981; Green & Myerson, 1994) or dynamic inconsistency (Thaler, 1981), Ebert and Prelec (2007) 

proposed a constant sensitivity (CS) discounting function: 

              )           (5) 

Where a estimates the level of impulsiveness and b sensitivity to time.  Note that when b = 1.0, 

Equation 5 reduces to exponential discounting; the parameter b regulates the power-scaling of time 

(Killeen, 2009), resembling other functions with scaling exponent (Green & Myerson, 2004; Yi et al., 2009; 

McKerchar et al., 2009).  In Equation 5 small values of the parameter b, symbolized as (b<<1), account 

for cases where all forthcoming LLR are down-weighted in similar way relative to the immediate present 

(i.e., a present-future dichotomy heuristic); large values of b, indicated as (b>>1), account for cases when 
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LLR are not discounted up to a given delay after which they are all discounted in similar way (i.e., an 

extended-present heuristic; Peter, Miedl, & Büchell, 2012). 

Comparisons of delay discounting models have been conducted (McKerchar et al., 2009; 

Myerson, & Green, 1995; Rachlin, 2006; Takahashi et al., 2008) pursuing a parsimonious model capable to 

explain delay discounting data across species, reinforcers (real and hypothetical), and settings.  With few 

exceptions (Peters et al., 2012; Takahashi et al., 2008), attempts to compare intertemporal models focused 

on goodness of fit (R2 values) looking for the model accounting for the greatest proportion of the variance 

(e.g., McKerchar et al., 2009; Myerson & Green 1995; Rachlin, 2006).  The analysis of R2 values to 

compare delay-discounting models, however, has two drawbacks.  One is that it confounds goodness of 

fit (R2) with discounting rate (k); this is a problem because these parameters are positively correlated, high 

vales of k result in high vales of R2.  A second drawback is over-fitting; models using two free parameters 

generate greater R2s than those using only one free parameter, prompting unfair comparisons (Peters et 

al., 2012). 

The information criterion index (AIC; Akaike, 1974) is an alternative method to compare models 

of intertemporal choice.  It takes into account both goodness of fit and the number of free parameters 

that need to be estimated in order to attain that fit.  To avoid the over-fitting problem, the AIC penalizes 

the model using more parameters and gives the lowest index to that estimating less parameters to fit the 

same data set, allowing fair comparisons of multiple non-nested models.  In practice, using raw AIC 

values to accept one model (the preferred model) is difficult because most of the times the differences in 

raw AIC values are not substantial among models.  Errors in interpretations when choosing a model can 

be avoided by transforming raw AIC values into AIC weights (Akaike, 1978, 1979; Bozdogan, 1987; 

Burnham & Anderson, 2002). 

One aim of the present study is to show that AIC weights simplify the interpretation of the results 

generated by five prevalent models of delay discounting using a different number of free parameters.  

Another goal is to compare these models using sections of a published data set (Aparicio, Elcoro, & 

Alonso-Alvarez, 2015) produced by Lewis (LEW) and Fischer 3444 (F344) rats choosing between two 

reinforcers differing from one another in the amount and delay to delivery (SSR vs. LLR).  This is 

important because formal comparisons of delay discounting models have been conducted using data from 

humans, usually college students (e.g., McKerchar et al., 2009; Myerson, & Green, 1995; Rachlin, 2006; 

Takahashi et al., 2008); and only one study compared discounting data from human controls and 

pathological gamblers (Peters et al., 2012).  To our knowledge, the present paper is the first study using 

the data from nonhuman animals to formally compare delay discounting models.  A final objective is 

demonstrating that Mazur’s (1987) hyperbolic-decay model is the preferred model (i.e., parsimonious 

model); even though in the present study all five models of delay discounting fitted the data of the LEW 

and F344 rats. 

Method 

Subjects 

Sixteen experimentally naïve (8-LEWs and 8-F344) male rats of approximately 122 days old at the 

beginning of the experiment, served as subjects.  Animals were placed on a regimen of food restriction 

with post-session feedings of approximately 10 g of Purina® Lab Chow and housed separately in plastic 

cages with water permanently available in a temperature-controlled colony room providing 12:12 hr 

light/dark cycle (lights on at 0600). 
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Apparatus 

Eight identical operant chambers for rats (Coulbourn E10-11R TC), measuring 29.5 cm long, 25.0 

cm wide, and 28.5 cm high, were used.  Each operant chamber was equipped with two retractable levers 

(E23-17RA) mounted on the intelligence panel, 7.0 cm above the floor and 2.5 cm from its respective left 

and right sidewall.  Above each retractable lever (3.5 cm) was a white 24-V DC stimulus light (H11-03R).   

A third nonretractable lever (H21-03R) was centered on the back wall of the chamber and mounted 6.0 

cm above the floor.  All levers required a force of approximately 0.25 N to operate.  A food dispenser 

(H14-23R) centered between the retractable levers, 2.0 cm above the floor, delivered 45-mg grain pellets 

(BioServ®) into a receptacle 3.0 cm wide and 4.0 cm long.  A 24-V DC houselight (H11-01R) centered on 

the back wall, 2.0 cm below the ceiling, provided ambient illumination.  A continuous white noise was 

presented on 2.6 cm x 4.0 cm speaker (H12-01R) connected to white noise generator (E12-08); the 

speaker was installed on the back wall, 1.0 cm from the left sidewall and 6.5 cm from the house light.   

Coulbourn Instruments® software and interfacing equipment, operating at .01-s resolution, were used to 

program the experimental events and record the data. 

Procedure 

The general procedure has been described into detail elsewhere (Aparicio et al., al 2015; Aparicio, 

Hughes, & Pitts, 2013); it was a concurrent chains procedure arranging choices in the initial link between 

1-food and 4-food pellets that were delivered in the terminal links, the former (SSR) with a 0.1-s delay and 

the latter (LLR) with a delay that varied within each session (0.1, 5, 10, 20, 40, or 80 s).  The delays to LLR 

delivery were manipulated in ascending, descending, and random order of presentation in conditions 

lasting 105 sessions each.  Figure 1 summarizes the concurrent chains procedure.  A single response on 

the back lever turned off the houselight (HL) and extended the levers into the chamber (SS-L and LL-L) 

with the lights above them turned on, signaling the initial link where two random interval schedules (RI) 

concurrently arranged entries to the terminal links (one every 11 seconds on average).   One RI 11-s 

schedule was associated with the SS-L and the other with the LL-L lever, setting up an approximately 

equal number of left and right terminal link entries (Alsop & Davison, 1986; Stubbs & Pliskoff, 1969).  

When a terminal link entry was set up in a given lever, SS-L or LL-L, one response on that lever initiated 

the terminal link retracting the opposite lever and turning off the light above it; a second response on the 

still extended lever (SS-L or LL-L) started a fixed-time schedule (FT), but that lever was not retracted to 

avoid signaling the delay to the reinforcer’s delivery.  The terminal link delivering the SSR (1-food pellet) 

was associated with the left SS-L and the terminal link delivering the LLR (4-food pellets) with the right 

LL-L.  These relations applied for half of the rats within each strain and were reversed for the other half 

of the rats (the SSR was associated with the right lever and the LLR with the left lever). 

 

 

The delay to the SSR was a FT 0.1 s and that to the LLR a FT that every 10 cycles took on 

different value (0.1, 5, 10, 20, 40, or 80 s).  Each cycle ended with the reinforcer’s delivery, LLR or SSR; 

the lever that produced it was retracted and the light above it turned off.   A new cycle began with the HL 

turned on (see Figure 1).  The completion of 10 cycles produced a 1-minute blackout, separating the 

previous delay to the LLR from a different delay to be active for the next 10 cycles.   Responses on the 

back lever were not effective during the blackout, and the levers were retracted from the chambers with 

the lights above them turned off.  Sessions ended after 60 cycles were completed or 60 minutes elapsed, 

whichever occurred first. 
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Figure 1. Concurrent chains procedure.  

 

Data Analysis 

A selected data set from a previous study (Aparicio et al., 2015) was re-analyzed and used for data 

analysis.  It consisted of the last 15 days of the data collected in each condition where the delays to the 

LLR were varied in ascending, descending, and random order.  For each individual LEW and F344 rat, the 

number of initial-link responses emitted on the SS-L and LL-L levers was counted separately for each 

delay to LLR and aggregated across sessions of the same condition.  Computations obtained for the 

individuals of the same strain, were used to calculate the group’s average of responses on the SS-L and 

LL-L levers.   These calculations in turn were used to compute the corresponding proportions of LL 

choice (LL / (LL + SS)) for the individuals and the average of each group.  Equations 1 to 5 which were 

entered manually into Origin (version 8.5) as user-defined equations, providing nonlinear curve fitting to 

the proportions of LL choice of the individual LEW and F344 rats and the averages of their 

corresponding groups.  It should be noted that in all equations the parameter A was free to vary; meaning 

that it was not assumed to be 100% LL choice at the y-intercept.  Except for Equation 5 that used a to 

estimate the level of impulsiveness, Equations 1 to 4 used k to estimate the rate of delay discounting. 

Results 

For the ascending, descending, and random presentation order of delay conditions, the left panels 

of Figures 2 to 4 plot the groups’ means of the proportions of LL choice as a function of delay to LLR, 

and the right panels the resulting R2s of the best fits to these data points using Equations 1 to 5.  The top 

panels show the data of the LEWs and the bottom panels those of the F344s.  The solid, dash, dash-dot 

dot, short dot, and short-dash dot lines are the best fits to data points of the LEWs and F344s using 

Equations 1 to 5, respectively.  

Figures 2 to 4 show that the groups’ means of the proportion of LL choice decreased as a 

function of the increasing delay to the LLR.  Delay discounting functions show that all equations fitted the 

groups’ data of the LEW and F344 rats, accounting for most proportion of the variance in LL choice that 

occurred as a function of within session changes in delay to the LLR.  In the Appendix A, the resulting 

parameters of Equations 1-5 (y-intercept (A), k, a, s, b, and R2) for the data of the groups are listed in 

Table 1, and those corresponding to the individual LEW and F344 rats in Tables 2 to 7. 
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Figure 2.  For the ascending presentation order of delays condition, the proportion of choice as a function of delay 
in seconds to LLR (left graphs).  The circles stand for the data of the LEWs and squares for data of the F344.  Solid, 
dash, dash-dot dot, short dot, and short-dash dot lines are the best fits using Equations 1 to 5, respectively.  The 
right panels show R2 values generated by Equations 1 to 5.  

 

Figure 3. For the descending presentation order of delays condition, the proportion of choice as a function of delay 
in seconds to LLR (left graphs).  Other details as in Figure 2.  

 

The ascending condition shows that both strains produced similar discounting functions (Figure 

2), with the choices of the F344s showing more variability than the choices of the LEWs across delays to 

LLR (compare error bars of the F344s with those of the LEWs).  However, the descending and random 

conditions (Figures 3 and 4) show steeper discounting functions for the group data of the LEWs than for 

the F344s, suggesting that in these conditions the former chose more impulsively that the latter strain of 

rats (but see Tables 4-7).  Consistent with results of the ascending condition, the F344s show more 

variability in the group’s mean of the proportion of LL choice than the LEWs across delays to LLR of the 

descending and random presentation order of delay conditions.  

There were no further attempts to compare here the discounting data of the LEW with those of 

the F344 rats; formal statistical comparisons between these strains were conducted in detail elsewhere 

(Aparicio et al., al 2015) analyzing the entire data set of conditions varying the presentation order of delay 

to LLR in ascending, descending, and random order.  As in Peters et al.’s, (2012) study, the analyses of the 

data focused in comparing and contrasting Equations 1 to 5 with one another using the following 

methods: (1) comparisons of R2s based on fits to group’s data and data of the individual LEW and F344 
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rats; (2) Akaike’s (1973) information criterion (AIC) computed for the groups and data corresponding to 

the individual LEWs and F344s; and (3) comparisons using raw AIC values transformed into AIC weights.   

Figure 4. For the random presentation order of delays condition, the proportion of choice as a function of delay in 
seconds to LLR (left graphs).  Other details as in Figure 2.  

 

Comparisons based on R2 

An inspection of the right panels of Figures 2 to 4 reveals that models of intertemporal choice 

that estimated two free parameters to fit the groups’ data of the LEW and F344 rats (i.e., Equations 3, 4, 

and 5), generated values of R2 that were slightly greater than those produced by models estimating only 

one free parameter to fit the same data points (Equations 1 and 2).  Yet, the ascending and descending 

conditions show that Equation 1 nicely fitted the data of the LEWs and F344s, respectively, and it did so 

estimating a single free parameters (k); note that Equation 1 generated R2s that are comparable to those 

Equations 3, 4, and 5 produced for the same data. The slightly low values of R2 that Equations 1 and 2 

show for the group’s data of the F344s in the random condition, and that corresponding to Equation 2 

for the data of the LEWs, were more likely due to an overestimation of short delays and underestimation 

of long delays characterizing the fits of Equations estimating only one free parameters (McKerchar et al., 

2009).   

Paired comparisons of R2 values using Wilcoxon signed rank tests (at the .05 level), indicated that 

the distribution of R2s that Equation 1 generated for the data of the individual LEWs and F344s was not 

significantly different from that Equation 2 produced in the ascending (Z = -.284, p = .781) and 

descending (Z = -1.215, p = .231) conditions.  In the random condition, however, the distribution of R2s 

that Equation 1 generated for the data of the individual LEW and F344 rats was significantly different (Z 

= 2.869, p = .002) from that of Equation 2.   

For models of intertemporal choice estimating two free parameters to fit the data (Equations 3, 4, 

and 5), paired comparisons of R2 values (Wilcoxon signed rank tests) showed that the distribution of R2s 

that Equation 3 generated for the data of the individual LEWs and F344s was significantly different from 

that Equation 4 produced in the ascending (Z = 2.611, p = .006) and random (Z = -1.990, p = .044) 

conditions; but it was not significantly different from that Equation 4 generated for the data of the 

descending condition (Z = -1.783, p = .073).   Paired comparisons of R2 values between Equations 4 and 5 

showed significant differences in the ascending (Z = 2.404, p = .013) and descending (Z = 2.527, p = 
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.008) conditions; but distributions of R2s were not significantly different (Z = 1.008, p = .322) in the 

random condition. 

Comparisons based on AIC 

 The Akaike’s (1973) information criterion (AIC) was computed to compare models of 

intertemporal choice, offering an alternative method to estimate the anticipated Kullback-Leibler (1951) 

discrepancy between the correct model and the prospective model.  AIC minimizes this discrepancy 

choosing the model with the lowest likely information loss (Akaike, 1973, 1974, 1978, 1979, 1987).  

Accordingly, the explanatory correct and parsimonious model is selected as:  

                    (6) 

Where the highest probability of the prospective model i (Li) is determined by adjusting a free 

parameter (Vi) maximizing the likelihood that the prospective model i has produced the data 

(Wagenmakers, & Farrell, 2004).  

Tables 8 and 9 show AIC values computed for model selection using group and individual data 

from LEWs and F344s, respectively.  The first column lists the equation, the second column the number 

of free parameters, and columns 3 to 5 show AIC values computed for data collected in the ascending, 

descending, and random conditions.  Because A was free to vary in all equations, it is one of free 

parameters listed in the 2nd column.   Columns 6, 7, and 8 show AIC weights (described below) obtained 

by comparing the fit of Equation 1 with the fit that any other Equation provided to the group and 

individual data for the LEW and F344 rats in the ascending, descending, and random conditions. 

Table 8. Results of AIC for model selection, using fits of the groups. 

 

LEW 

AIC 
 

Δ (AIC) 

Model No. Par Asc. Des. Ran. 
 

Asc. Des. Ran. 

Eq.1 2 4. 11 15.23 8.34 
 

0.00 10.63 0.00 

Eq.2 2 12.45 4.60 13.82 
 

8.30 0.00 5.48 

Eq.3 3 33.78 30.00 29.43 
 

29.67 25.41 21.09 

Eq.4 3 32.72 22.81 27.01 
 

28.61 18.22 18.67 

Eq.5 3 37.72 32.65 26.38 
 

33.60 28.05 18.04 

 
 

 F344 

Eq.1 2 12.66 -28.58 1.92 
 

11.87 0.00 0.00 

Eq.2 2 0.79 -6.95 3.72 
 

0.00 21.63 1.81 

Eq.3 3 30.79 0.68 15.66 
 

30.00 29.26 13.74 

Eq.4 3 34.55 0.55 9.83 
 

33.76 29.14 7.91 

Eq.5 3 30.25 7.33 8.04 
 

29.46 35.91 6.12 

 
The ascending condition shows that Equation 1 is the preferred model (i.e., the model with the 

lowest AIC value) fitting group’s data (AIC = 4.11) and data of the individual LEWs (AIC = - 19.74).   

For the F344s in the same ascending condition, however, Tables 8 and 9 show that Equation 2 is the 

preferred model fitting group’s data (AIC = 0.79) and data of the individual F344s  (AIC = - 6.90).   For 

both strains, the descending condition (Table 9) shows that Equation 2 is the preferred model fitting the 

data of individual LEWs (AIC = - 30.15) and F344s (AIC = -19.73). The same result is observed for the 

group’s data of the LEWs (Table 8), Equation 2 (AIC = 4.60) is the chosen model; however, Equation 1 
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(AIC = - 28.58) was the preferred model fitting the group’s data of the F344s.  For both strains, the 

random condition (Table 8) shows that Equation 1 is the chosen model fitting the group’s data (AIC = 

8.34 and 1.92) and data of the individual (AIC = - 22.70 and - 20.18) LEWs and F344s, respectively (Table 

9).   To assess the relative performance of models, the difference in AIC between a given model and the 

chosen model (i.e., the model with the lowest AIC value) was computed using Equation 7 (e.g., Akaike, 

1978; Burnham & Anderson, 2002). 

                        (7) 

 
Table 9. Results of AIC for model selection, using fits of the individuals. 

 

LEW 

AIC 
 

Δ (AIC) 

Model No. Par Asc. Des. Ran. 
 

Asc. Des. Ran. 

Eq.1 2 -19.74 -16.68 -22.70 
 

0.00 13.47 0.00 

Eq.2 2 -17.25 -30.15 -18.35 
 

2.50 0.00 4.35 

Eq.3 3 9.10 -0.14 0.65 
 

28.84 30.01 23.35 

Eq.4 3 7.05 1.58 0.79 
 

26.80 31.72 23.49 

Eq.5 3 11.57 -2.57 1.41 
 

31.32 14.11 24.11 

 

 
F344 

Eq.1 2 -5.64 -19.67 -20.18 
 

1.25 0.06 0.00 

Eq.2 2 -6.90 -19.73 -18.27 
 

0.00 0.00 1.91 

Eq.3 3 23.10 10.27 3,82 
 

30.00 30.00 24.00 

Eq.4 3 15.47 11.40 5.27 
 

22.37 31.13 25.45 

Eq.5 3 15.43 11.40 5.78 
 

22.32 31.13 25.96 

 
Tables 8 and 9 (columns 6-8) show computations of Δi (AIC) that confirmed the results based on 

AIC values; the preferred models fitting the group and individual data of LEW and F344 rats are 

Equations 1 and 2, showing Δi (AIC) = 0 in the ascending, descending, and random conditions.   

Aikaike Weights 

Formal comparisons between models of intertemporal choice estimating one or two free 

parameters to fit the data, Aikaike weights wi (AIC) were calculated using Equation 8 (Burnham & 

Anderson, 2002). 

          
     

 

 
          

       
 

 
          

   

    (8) 

Where ∑ wi(AIC) = 1.  Tables 10 and 11 show the resulting Aikaike weights computed with 

models fitting the groups’ data of the LEWs and F344s.  As Wagenmakers and Farrell (2004) noted, 

Aikaike weights are interpreted as the likelihood that a particular model has to minimize the Kullback-

Leibler (1951) discrepancy given a particular data set and the models being compared (Burnham & 

Anderson, 2001). 
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Comparisons between Equation 1 and 2 based on Aikaike weights (Table 10) reveal that 

hyperbolic-decay model (Equation 1) has the highest probability (1.0) of being the correct model fitting 

the groups’ data of the LEWs and F344s (but see random condition).  However, fitting the data of the 

LEWs in the descending and those of the F344s in the ascending condition, the model with the highest 

probability (1.0) of minimizing the Kullback-Leibler (1951) discrepancy is the exponential discounted 

utility model (Equation 2). 

For the ascending, descending, and random conditions, Table 11 shows Aikaike weights 

comparing: (1) Equation 2 with Equations 3, 4, and 5 (rows 2-5, 6-9, and 10-13); (2) Equation 3 with 

Equations 4 and 5 (rows 14-16, 18-19, and 20-22); and (3) comparisons between Equation 4 and 5 (rows 

23-24, 25-26, and 27-28, respectively).  When comparing Equations 3, 4, or 5 with Equation 2, the latter 

shows the highest probability (1.0) of being correct fitting the groups’ data of the LEWs and F344s across 

conditions (but see F344s in the random condition).  For models estimating two parameters, Table 11 

shows that Equation 4 has the highest probability of being correct fitting data of the LEWs and F344s in 

the descending (.973 and .515) and random (.770 and .948) conditions.  In the ascending condition 

Equation 3 shows the highest probability (.867) of being correct fitting the data of the F344s and 

Equation 4 (.629) fitting the data of the LEWs.  Comparisons of Aikake weights between Equation 4 and 

5, show that the former has the highest probability of being correct fitting data of the LEWs in the 

ascending condition (.923) and fitting data of both strains in the descending condition (.992 and .973, 

respectively).   For both strains the random condition shows that Equation 5 has the highest probability of 

being correct fitting data of the LEWs and F344s (.587 and .709, respectively).  

   Table 10. Akaike Weights and Residual Sum of Squares (RSS). 

 
LEW 

 
F344 

 
w (AIC) RSS 

 
w (AIC) RSS 

Asc            

Eq.1 0.9848 1.0000 1.0000 1.0000 0.5927 
 

0.0026 0.9999 1.0000 0.9999 2.4645 

Eq.2 0.0152 
   

2.3808 
 

0.9974 
   

0.3408 

Eq.3 
 

3.6E-07 
  

0.5613 
  

1.2E-04 
  

0.3409 

Eq.4 
  

6.1E-07 
 

0.4701 
   

1.8E-05 
 

0.6382 

Eq.5 
   

5.0E-08 1.0807 
    

1.5E-04 0.3115 

 Des. 
           

Eq.1 0.0049 0.9994 0.9780 0.9998 3.7788 
 

1.0000 1.0000 1.0000 1.0000 0.0026 

Eq.2 0.9951 
   

0.6425 
 

2.0E-05 
   

0.0938 

Eq.3 
 

6.2E-04 
  

0.2989 
  

4.4E-07 
  

0.0023 

Eq.4 
  

0.0220 
 

0.0902 
   

4.7E-07 
 

0.0022 

Eq.5 
   

1.6E-04 0.4646 
    

1.6E-08 0.0068 

 
Ran. 

           
Eq.1 0.93929 1.0000 0.99991 0.9999 1.1987 

 
0.7116 0.9990 0.9812 0.95523 0.4113 

Eq.2 0.06071 
   

2.9870 
 

0.2884 
   

0.5557 

Eq.3 
 

2.6E-05 
  

0.2714 
  

0.00104 
  

0.0274 

Eq.4 
  

8.8E-05 
 

0.1814 
   

0.0188 
 

0.0104 

Eq.5 
   

1.2E-04 0.1633 
    

0.04477 0.0077 
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Computations of Aikaike weights for all five models fitting data of the individual LEWs and 

F344s are listed in Tables B1 and B2 (Appendix B), showing results consistent with those described above 

for models of intertemporal choice fitting the groups’ data of the LEWs and F344s.  The next step was to 

compute the evidence ratio of Aikaike weights of one model over the other and express the normalized 

probability that the former had to be chosen over the latter.  For example, the evidence ratio of Aikaike 

weights between Equation 1 and 2 (see Table 10) was computed as 

         

         
  

    

    
      

     Table 11. Results of AIC, Weights, and Residual Sum of Squares (RSS) using fits of group. 

 
LEW 

 
F344 

              
 

AIC Δ(AIC) RSS w(AIC) 
 

AIC Δ(AIC) RSS w(AIC) 

Asc 
         

Eq.2 12.45 0.00 2.3808 1.0000 1.0000 1.0000 
 

0.79 0.00 0.3408 1.0000 1.0000 1.0000 
Eq.3 33.78 21.33 0.5613 2.3E-05 

   
30.79 30.00 0.3409 3.1E-07 

  
Eq.4 32.72 20.27 0.4701 

 
4.0E-05 

  
34.55 33.76 0.6382 

 
4.7E-08 

 
Eq.5 37.72 25.26 1.0807 

  
3.3E-06 

 
30.25 29.46 0.3115 

  
4.0E-07 

  
             

Des. 
             

Eq.2 4.60 0.00 0.6425 1.0000 0.9999 1.0000 
 

-6.95 0.00 0.0938 0.9784 0.97706 0.99921 
Eq.3 30.00 25.41 0.2989 3.0E-06 

   
0.68 7.62 0.0023 0.0216 

  
Eq.4 22.81 18.22 0.0902 

 
1.1E-04 

  
0.55 7.50 0.0022 

 
0.02294 

 
Eq.5 32.65 28.05 0.4646 

  
8.1E-07 

 
7.33 14.28 0.0068 

  
0.0008 

  
             

Ran. 
             

Eq.2 13.82 0.00 2.9870 0.9996 0.9986 0.9981 
 

3.72 0.00 0.5557 0.9975 0.9548 0.89635 
Eq.3 29.43 15.61 0.2714 0.0004 

   
15.66 11.93 0.0274 0.0026 

  
Eq.4 27.01 13.19 0.1814 

 
0.0014 

  
9.83 6.10 0.0104 

 
0.0452 

 
Eq.5 26.38 12.56 0.1633 

  
0.0019 

 
8.04 4.31 0.0077 

  
0.10365 

  
             

Asc 
  

LEW 
      

F344 
   

Eq.3 33.78 1.06 0.5613 0.3701 0.8771 
  

30.79 0.37 0.3409 0.8677 0.43262 
 

Eq.4 32.72 0.00 0.4701 0.6299 
   

34.55 0.63 0.6382 0.1323 
  

Eq.5 37.72 4.99 1.0807 
 

0.1229 
  

30.25 0.00 0.3115 
 

0.56738 
 

  
             

Des 
             

Eq.3 30.00 7.19 0.2989 0.0267 0.7897 
  

0.67555 0.12 0.0023 0.4849 0.96529 
 

Eq.4 22.81 0.00 0.0902 0.9733 
   

0.55454 0.00 0.0022 0.5151 
  

Eq.5 32.65 9.84 0.4646 
 

0.2103 
  

7.32632 6.77 0.0068 
 

0.03471 
 

  
             

Ran 
             

Eq.3 29.43 3.05 0.2714 0.2299 0.1788 
  

15.66 7.62 0.0274 0.0513 0.02167 
 

Eq.4 27.01 0.63 0.1814 0.7701 
   

9.83 1.79 0.0104 0.9487 
  

Eq.5 26.38 0.00 0.1633 
 

0.8212 
  

8.04 0.00 0.0077 
 

0.97833 
 

  
             

Asc 
             

Eq.4 32.72 0.00 0.4701 0.9239 
   

34.55 4.30 0.6382 0.1041 
  

Eq.5 37.72 4.99 1.0807 0.0761 
   

30.25 0.00 0.3115 0.8959 
  

  
             

Des 
             

Eq.4 22.81 0.00 0.0902 0.9927 
   

0.55454 0.00 0.0022 0.9673 
  

Eq.5 32.65 9.84 0.4646 0.0073 
   

7.32632 6.77 0.0068 0.0327 
  

  
             

Ran 
             

Eq.4 27.01 0.63 0.1814 0.4217 
   

9.82526 1.79 0.0104 0.2905 
  

Eq.5 26.38 0.00 0.1633 0.5783 
   

8.03929 0.00 0.0077 0.7095 
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The result in this example suggests that Equation 1 is 64.8 times is more likely to be chosen than 

Equation 2.  Then this evidence ratio was expressed as the normalized probability that Equation 1 has to 

be chosen over Equation 2 as follows: 

         

                    
  

    

          
       

Following the example, Equation 1 has a .985 probability to be the correct fitting the group’s data 

of the LEWs.  Accordingly, the evidence ratio of Aikaike weights was computed for each model of 

intertemporal choice taking a turn in the numerator, and then it was expressed as the normalized 

probability that the model had to be chosen over the other.  Tables 12 and 13 display normalized 

probabilities computed with Aikaike weights of models fitting the data of the groups, and Tables 14 and 

15 those corresponding to Aikaike weights of models fitting the data of the individual LEWs and F344s.  

The first column list the presentation order of delays to LLR condition, the second column uses the 

symbol > representing that one model was chosen over the other, the third column the number of times 

that model is more likely to be correct, and the forth column the normalized probability that the model 

had to be preferred over the other; comparable comparisons and computations for the F344s are shown 

in columns 5, 6, and 7 of Tables 12-15.  

Table 12 shows that among models of intertemporal choice, Mazur’s (1987) hyperbolic-decay 

model (Eq. 1) was the best model fitting the group’s data of the LEWs and F344s.  Only two times the 

exponential discounted utility model (Eq. 2) was chosen over Equation 1; when fitting group’s data of the 

LEWs in the descending condition and those of the F344s in the ascending condition.  Comparisons 

excluding Equation 1 show that Equation 2 is the second best model fitting group’s data of the LEWs and 

F344s across conditions.  Further comparisons of models that estimated two free parameters to fit the 

groups’ data (Table 13), showed mixed results: (1) Ebert and Prelec’s (2007) constant sensitivity 

discounting model (Equation 5) was the preferred model fitting data the LEWs in the random condition 

and those of the F344s across conditions; and (2) Rachlin’s (2006) power function of hyperbolic 

discounting (Equation 4) was the chosen model fitting groups’ data of the LEW in the ascending 

condition and the data of both strains in the descending condition. 

Table 12. Best Model and Normalized Probability (group). 

 
LEW 

 
F344 

 
Eq. Times p 

 
Eq. Times p 

Asc. 1 > 2 6.5E+01 0.98 
 

2 > 1 3.8E+02 1.00 

 
1 > 3 2.8E+06 1.00 

 
2 > 3 8.6E+03 1.00 

 
1 > 4 1.6E+06 1.00 

 
2 > 4 5.7E+04 1.00 

 
1 > 5 2.0E+07 1.00 

 
2 > 5 6.6E+03 1.00 

Desc. 2 > 1 2.0E+02 1.00 
 

1 > 2 5.0E+04 1.00 

 
2 > 3 1.6E+03 1.00 

 
1 > 3 2.3E+06 1.00 

 
2 > 4 4.5E+01 0.98 

 
1 > 4 2.1E+06 1.00 

 
2 > 5 6.0E+03 1.00 

 
1 > 5 6.3E+07 1.00 

Ran. 1 > 2 1.5E+01 0.94 
 

1 > 2 2.5E+00 0.71 

 
1 > 3 3.6E+04 1.00 

 
1 > 3 6.8E+02 1.00 

 
1 > 4 1.1E+04 1.00 

 
1 > 4 3.8E+01 0.97 

 
1 > 5 7.8E+03 1.00 

 
1 > 5 1.6E+01 0.94 
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Evidence ratios and normalized probabilities computed with Aikaike weights of models fitting the 

data of the individual LEWs and F344s are listed in Tables 14 and 15.  The results are consistent with 

those computed for models fitting the data of the groups.  Table 14 shows that the hyperbolic-decay 

model (Equation 1) is the best model and the exponential discounted utility (Equation 2) the second best 

model.  When Equation 1 was excluded, comparisons revealed that the exponential discounted utility 

model was the second best model fitting data of the individual LEW and F344 rats. 

Table 13. Best Model   and Normalized Probability (group). 

 
LEW 

 
F344 

 
Eq. Times p 

 
Eq. Times p 

Asc. 2 > 3 4.3E+04 1.00 
 

2 > 3 3.3E+06 1.00 

 
2 > 4 2.5E+04 1.00 

 
2 > 4 2.1E+07 1.00 

 
2 > 5 3.1E+05 1.00 

 
2 > 5 2.5E+06 1.00 

        
 

4 > 3 1.7E+00 0.63 
 

5 > 3 6.5E-01 0.40 

 
4 > 5 5.1E+00 0.84 

 
5 > 4 4.3E+00 0.81 

        
 

4 > 5 1.2E+01 0.92 
 

5 > 4 8.6E+00 0.23 

        Desc. 2 > 3 3.3E+05 1.00 
 

2 > 3 4.5E+01 0.98 

 
2 > 4 9.0E+03 1.00 

 
2 > 4 4.3E+01 0.98 

 
2 > 5 1.2E+06 1.00 

 
2 > 5 1.2E+03 1.00 

        
 

4 > 3 3.6E+01 0.97 
 

4 > 3 1.1E+00 0.52 

 
4 > 5 7.6E-01 0.82 

 
4 > 5 1.5E+01 0.94 

        
 

4 > 5 1.4E+02 0.99 
 

4 > 5 3.0E+01 0.97 

        Ran. 2 > 3 2.5E+03 1.00 
 

2 > 3 3.9E+02 1.00 

 
2 > 4 7.3E+02 1.00 

 
2 > 4 2.2E+01 0.96 

 
2 > 5 5.3E+02 1.00 

 
2 > 5 9.6E+00 0.91 

        
 

5 > 3 3.6E+00 0.78 
 

5 > 3 1.9E+01 0.95 

 
5 > 4 1.1E+00 0.52 

 
5 > 4 1.0E+00 0.51 

        
 

5 > 4 1.4E+00 0.58 
 

5 > 4 2.4E+00 0.71 

 

Table 14. Best Model  and Normalized Probability (Individuals). 

 
LEW 

 
F344 

 
Eq. Times P 

 
Eq. No. P 

Asc. 1 > 2 3.5E+00 0.78 
 

2 > 1 1.9E+00 0.65 

 
1 > 3 1.4E+06 1.00 

 
2 > 3 1.1E+06 1.00 

 
1 > 4 5.1E+05 1.00 

 
2 > 4 2.5E+04 1.00 

 
1 > 5 4.9E+06 1.00 

 
2 > 5 2.5E+04 1.00 

Desc. 2 > 1 8.4E+02 1.00 
 

2 > 1 1.0E+00 0.51 

 
2 > 3 3.9E+03 1.00 

 
2 > 3 1.6E+06 1.03 

 
2 > 4 9.2E+03 1.00 

 
2 > 4 2.8E+06 1.00 

 
2 > 5 1.2E+03 1.00 

 
2 > 5 2.8E+06 1.00 

Ran. 1 > 2 8.8E+00 0.90 
 

1 > 2 2.6E+00 0.72 

 
1 > 3 1.1E+05 1.00 

 
1 > 3 1.2E+05 1.00 

 
1 > 4 1.1E+05 1.00 

 
1 > 4 2.4E+05 1.00 

 
1 > 5 1.5E+05 1.00 

 
1 > 5 3.1E+05 1.00 
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In Table 15, further comparisons between models that estimated two free parameters to fit the 

data show that Myerson and Green’s (1995) hyperboloid model (Eq. 3) is the preferred model fitting data 

of both strains in the descending and random conditions.  Rachlin’s (2006) power function of hyperbolic 

discounting (Eq. 4) was the preferred model fitting data of the LEWs in the ascending condition; but 

Ebert and Prelec’s (2007) constant sensitivity discounting model (Eq. 5) was chosen fitting data of the 

F344s in the ascending condition. 

Discussion 

The aim of the present study was to compare five prevalent models of intertemporal choice, 

describing the impulsive choices of LEW and F344 rats at the group and individual levels of analysis.   A 

revealing result was that all five models of intertemporal choice nicely fitted the data of the LEWs and 

F344s at both levels of analysis.  The techniques of maximum likelihood parameter estimation and model 

comparison were used to weigh and compare these models of intertemporal choice.   

Consistent with findings of studies comparing models of intertemporal choice fitting delay 

discounting data from humans (McKerchar et al., 2009; Rachlin, 206; Myerson & Green, 1995; Takahashi 

et al., 2008), this study showed that dual-parameter models provide better fits to delay discounting data 

from nonhuman animals (R2 was greater) than single-parameter models. 

Table  15. Best Model  and Normalized Probability (Individuals). 

 

LEW 
 

F344 

Eq. Times p 
 

Eq. Times p 

Asc. 2 > 3 5.3E+05 1.00 
 

2 > 3 3.3E+06 1.00 

 
2 > 4 1.9E+05 1.00 

 
2 > 4 7.2E+04 1.00 

 
2 > 5 1.8E+06 1.00 

 
2 > 5 7.0E+04 1.00 

        
 

4 > 3 2.8E+00 0.74 
 

5 > 3 4.5E+01 0.98 

 
4 > 5 3.3E+00 0.77 

 
5 > 4 1.0E+00 0.50 

        
 

4 > 5 9.6E+00 0.91 
 

5 > 4 1.0E+00 0.51 

        Desc. 2 > 3 3.3E+06 1.00 
 

2 > 3 3.3E+06 1.00 

 
2 > 4 7.7E+06 1.00 

 
2 > 4 5.7E+06 1.00 

 
2 > 5 9.7E+05 1.00 

 
2 > 5 5.7E+06 1.00 

        
 

3 > 4 2.4E+00 0.70 
 

3 > 4 1.8E+00 0.64 

 
3 > 5 9.1E-01 0.48 

 
3 > 5 1.8E+00 0.64 

        
 

5 > 4 7.9E+00 0.89 
 

4 = 5 1.0E+00 0.50 

        Ran. 2 > 3 1.3E+04 1.00 
 

2 > 3 6.2E+04 1.00 

 
2 > 4 1.4E+04 1.00 

 
2 > 4 1.3E+05 1.00 

 
2 > 5 2.0E+04 1.00 

 
2 > 5 1.7E+05 1.00 

        
 

3 > 4 1.1E+00 0.52 
 

3 > 4 2.1E+00 0.67 

 
3 > 5 1.3E+00 0.56 

 
3 > 5 2.5E+00 0.71 

        
 

4  > 5 1.4E+00 0.58 
 

4 > 5 1.3E+00 0.56 

 
 

With respect to single-parameter models, the present study showed that Mazur’s (1987) 

hyperbolic-decay model is the preferred model, and Samuelson’s (1937) exponential discounted utility the 

second best model fitting group and individual data from LEW and F344 rats.  In the ascending and 

random presentation order of delays conditions, Mazur’s (1987) hyperbolic-decay model generated R2s 
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that were comparable to those that dual-parameter models (Equations 3, 4, and 5) generated fitting the 

data of the LEWs and F344s.  At the group and individual levels of analysis, these results seem to fully 

support Mazur’s (1987) over Samuelson’s (1937) model (i.e., McKerchar et al., 2009).   Nonetheless, the 

distribution of R2s that Mazur’s (1987) hyperbolic-decay model generated fitting the data of individual 

LEWs and F344s was not significantly different from that Samuelson’s (1937) exponential discounted 

utility model generated fitting data in the ascending and descending conditions.  Only for the data 

collected in the random condition, Mazur’s (1987) model generated a distribution of R2s that was 

significantly different (Z = 2.869, p = .002) from that Samuelson’s (1937) model.  Also, when delays to 

LLR were presented in descending order Samuelson’s (1937) model performed better than Mazur’s (1987) 

model, R2 was consistently greater fitting the group’s data of the F344s.  This result suggests that 

Samuelson’s (1937) exponential discounted utility function handled the variability in the data of the F344s 

better that the Mazur’s (1987) model, and it is in dispute with studies questioning the efficacy of 

Samuelson’s (1937) model to fit delay discounting data (e.g., Kirby & Herrnstein; 1995; Madden et at., 

1999; Myerson & Green. 1995). 

For dual-parameter models (Equations 3, 4, and 5), paired comparisons indicated no differences 

in R2s between Equations 4 and 5; nor there were differences in R2  distributions between Equations 3 and 

4, replicating results obtained with humans (Rachlin, 2006).  The distribution of R2s that Equation 3 

generated fitting the data of the individual LEWs and F344s, was significantly different from that 

Equation 4 generated for the data of the ascending and random conditions.  Paired comparisons between 

Equations 4 and 5 also showed differences in distributions of R2s when fitting data in the ascending and 

descending conditions.  Consequently, the present results do not support the idea that is difficult to 

discriminate between dual-parameter models only on the basis of their fits to the data (Rachlin, 2006); this 

notion might only apply to delay discounting data from humans. 

The present study used the Akaike’s (1973) information criterion (AIC), offering an alternative 

method to estimate the anticipated Kullback-Leibler (1951) discrepancy between the correct model and 

the prospective model.  Generally, the results showed that Mazur’s (1987) hyperbolic-decay model was the 

preferred model (i.e., the model with the lowest AIC value) fitting the data of the LEWs and F344s in the 

ascending and random conditions.  However, for the data collected in the descending condition, 

Samuelson’s (1937) exponential discounted utility model was the best model fitting group’s data of the 

LEWs and data of the individual LEW and F344 rats (see Tables 8 and 9).    

To facilitate comparisons between AIC values computed for models fitting the groups’ data and 

those computed for models fitting the data of the individual LEWs and F344s, the analysis of the results 

focused on the relative performance of the models, computing for each model the difference in AIC with 

respect to the AIC of the preferred model (e.g., Akaike, 1978; Burnham & Anderson, 2002).  These 

computations confirmed the results based on raw AIC values; Mazur’s (1987) and Samuelson’s (1937), 

with a Δi (AIC) = 0, were the preferred models fitting the groups’ data and data of the individual LEWs 

and F344s in the ascending, descending, and random conditions (see Tables 8 and 9).   

Accordingly, the differences in AIC were used to estimate for each model the relative probability 

of being correct; and the obtained relative probabilities, in turn, were normalized to compute Aikaike 

weights (e.g., Burnham & Anderson, 2002).  Again, these results showed that Mazur’s (1987) model, with 

probability of 1.0 of minimizing the Kullback-Leibler (1951) discrepancy, was the correct model fitting the 

data of the LEWs and F344s.  Only two times, Samuelson’s (1937) exponential discounted utility function 

qualified as the second best model fitting the data of the LEWs in the descending condition and those of 

the F344s in the ascending condition (see Table 10).  Computations of Aikaike weights allowed the 

comparisons of dual-parameter models, confirming that Rachlin’s (2006) power function of hyperbolic 
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discounting has the highest probability of being the correct fitting the groups’ data of the LEW in the 

ascending condition and the data of both strains in the descending condition (Table 11).  However, 

Myerson and Green’s (1995) hyperboloid model yielded the highest probability of being the correct model 

fitting the data of the F344s in the ascending condition, and Ebert and Prelec’s (2007) constant sensitivity 

model the highest probability of being correct fitting the data of the LEWs.  Further comparisons 

between Rachlin’s (2006) and Ebert and Prelec’s (2007) models showed mixed results, with the former 

getting the highest probability of being correct fitting the data of the LEWs and F344s in the ascending 

and descending conditions and Ebert and Prelec’s (2007) model with the highest probability of being the 

correct model fitting the data of the LEWs and F344s in the random condition.  

The analysis of the results concluded with the computations of evidence ratios of Aikaike weights, 

assessing how much evidence ratios support one model over the other model.  Resulting evidence ratios 

and normalized probabilities confirmed findings described above.  Generally, Mazur’s (1987) hyperbolic-

decay model was the best model fitting groups’ data and data of the individual LEW and F344 rats, and 

Samuelson’s (1937) exponential discounted utility function was the second best model fitting data of both 

strains (Tables 12 and 13).   Further comparisons between models estimating two free parameters to fit 

the data showed that Myerson and Green’s (1995) hyperboloid model was the best model fitting data of 

both strains in the descending and random conditions.  Rachlin’s (2006) power function of hyperbolic 

discounting performed better than Myerson and Green’s (1995) hyperboloid model fitting data of the 

LEWs in the ascending condition, and Ebert and Prelec’s (2007) constant sensitivity discounting model 

fitting data of the F344s in the ascending condition. 

In conclusion, the present study showed that Mazur’s (1987) hyperbolic-decay model is the best 

and most parsimonious model fitting the group’s data and data of the individual LEW and F344 rats.  The 

results showed that Aikaike weights are easy to compute and agree with the idea that they facilitate formal 

comparisons between single-parameter and dual-parameter models of intertemporal choice (Wagenmakers 

et al., 2004).  Aikaike weights are interpreted as the probability that each model has to minimize the 

Kullback-Leibler (1951) discrepancy, providing a relative index to compare competitive models.  Some 

researchers believe, however, that AIC is too generous tending to select excessively complex models (Kass 

& Raftery, 1995). Others claim that AIC is not a consistent in situations where the number of 

observations grows very large (Bozdogan, 1987).  One alternative to the AIC is the Bayesian information 

criterion (BIC) to select models (Burnham & Anderson, 2002; Kass & Raftery, 1995).  Future research will 

be needed to determine a suitable way to use of Aikaike weights to choose between models of 

intertemporal choice fitting delay discounting data by human and nonhuman animals.   
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Appendix A 

 

Table 1.

Resulting parameters and analyses of fits using Equations 1 to 5.

A SE-A k/a SE-k s/b SE-s Chi-Sqr

Ascending

Eq.1 LEW 0.712 0.016 0.058 0.007 0.148 0.991

F344 0.736 0.089 0.082 0.034 0.616 0.916

Eq.2 LEW 0.696 0.031 0.030 0.005 0.595 0.963

F344 0.700 0.028 0.036 0.004 0.085 0.988

Eq.3 LEW 0.711 0.019 0.046 0.030 1.160 0.484 0.187 0.988

F344 0.700 0.037 0.000 0.009 4.6E+03 5.0E+06 0.114 0.984

Eq.4 LEW 0.708 0.017 0.039 0.020 1.120 0.143 0.157 0.990

F344 0.680 0.051 0.007 0.009 1.738 0.385 0.213 0.971

Eq.5 LEW 0.720 0.031 0.032 0.005 0.695 0.148 0.360 0.978

F344 0.680 0.051 0.007 0.009 1.738 0.385 0.213 0.971

Descending

Eq.1 LEW 0.686 0.098 0.121 0.038 0.945 0.918

F344 0.486 0.007 0.049 0.002 6.4E-04 0.998

Eq.2 LEW 0.624 0.032 0.036 0.002 0.161 0.986

F344 0.429 0.032 0.021 0.003 0.023 0.938

Eq.3 LEW 0.647 0.030 0.010 0.008 4.655 2.820 0.100 0.991

F344 0.488 0.009 0.054 0.010 0.942 0.088 0.001 0.998

Eq.4 LEW 0.621 0.016 0.009 0.003 1.669 0.083 0.030 0.997

F344 0.488 0.009 0.054 0.010 0.942 0.088 0.001 0.998

Eq.5 LEW 0.648 0.041 0.040 0.006 0.885 0.107 0.155 0.987

F344 0.488 0.009 0.054 0.010 0.942 0.088 7.5E-04 0.998

Random

Eq.1 LEW 0.628 0.024 0.025 0.005 0.300 0.945

F344 0.696 0.024 0.009 0.002 0.103 0.865

Eq.2 LEW 0.599 0.033 0.014 0.003 0.747 0.862

F344 0.686 0.026 0.007 0.002 0.139 0.817

Eq.3 LEW 0.654 0.016 0.130 0.056 0.389 0.081 0.090 0.983

F344 0.733 0.010 0.272 0.107 0.157 0.023 0.009 0.988

Eq.4 LEW 0.664 0.016 0.084 0.022 0.682 0.068 0.060 0.989

F344 0.751 0.009 0.084 0.014 0.481 0.038 0.003 0.995

Eq.5 LEW 0.677 0.018 0.013 0.001 0.504 0.054 0.054 0.990

F344 0.760 0.010 0.003 0.000 0.395 0.031 0.003 0.997

  



Conductual, Revista Internacional de Interconductismo y Análisis de Conducta                                                Models of Intertemporal Choice 

 
 

 
  103 

 

Ref.: Conductual, 2015, 3, 2, 82-110 ISSN: 2340-0242  

 

Table 2. 

Resulting parameters for the LEWs in the Ascending condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 L201 0.780 0.057 0.043 0.011 0.004 0.931

L202 0.805 0.069 0.064 0.018 0.006 0.922

L203 0.740 0.055 0.074 0.017 0.003 0.948

L204 0.631 0.022 0.146 0.015 0.000 0.989

L205 0.732 0.040 0.033 0.007 0.002 0.936

L206 0.761 0.048 0.043 0.010 0.003 0.946

L207 0.684 0.032 0.050 0.008 0.001 0.969

L208 0.766 0.052 0.102 0.021 0.003 0.959

Eq.2 L201 0.754 0.030 0.026 0.003 0.002 0.974

L202 0.774 0.064 0.038 0.008 0.006 0.911

L203 0.712 0.039 0.043 0.006 0.002 0.965

L204 0.598 0.061 0.078 0.018 0.004 0.902

L205 0.680 0.055 0.018 0.005 0.006 0.823

L206 0.732 0.034 0.026 0.003 0.002 0.964

L207 0.639 0.047 0.027 0.006 0.004 0.906

L208 0.737 0.058 0.059 0.011 0.004 0.938

Eq.3 L201 0.757 0.040 0.002 0.011 14.373 8.2E+01 0.002 0.965

L202 0.796 0.076 0.027 0.044 1.884 2.320 0.006 0.913

L203 0.725 0.045 0.017 0.024 3.009 3.514 0.002 0.965

L204 0.635 0.023 0.205 0.086 0.819 0.179 0.000 0.989

L205 0.753 0.044 0.089 0.074 0.552 0.236 0.002 0.945

L206 0.744 0.042 0.009 0.017 3.344 5.118 0.002 0.960

L207 0.684 0.041 0.052 0.043 0.977 0.507 0.002 0.958

L208 0.759 0.056 0.053 0.054 1.569 1.115 0.003 0.955

Eq.4 L201 0.730 0.022 0.005 0.003 1.628 0.175 0.001 0.990

L202 0.775 0.063 0.018 0.020 1.428 0.341 0.004 0.940

L203 0.706 0.031 0.017 0.010 1.496 0.191 0.001 0.984

L204 0.637 0.027 0.177 0.061 0.925 0.121 0.001 0.987

L205 0.754 0.054 0.060 0.045 0.835 0.193 0.002 0.931

L206 0.723 0.029 0.009 0.006 1.460 0.193 0.001 0.982

L207 0.679 0.041 0.042 0.028 1.055 0.189 0.002 0.960

L208 0.746 0.047 0.043 0.030 1.322 0.239 0.002 0.968

Eq.5 L201 0.745 0.043 0.026 0.003 1.072 0.199 0.002 0.967

L202 0.790 0.093 0.037 0.010 0.871 0.294 0.008 0.888

L203 0.719 0.056 0.043 0.007 0.932 0.209 0.003 0.955

L204 0.700 0.071 0.098 0.031 0.472 0.108 0.001 0.975

L205 0.770 0.076 0.018 0.005 0.573 0.181 0.003 0.905

L206 0.737 0.051 0.026 0.004 0.964 0.207 0.003 0.952

L207 0.691 0.060 0.028 0.006 0.692 0.175 0.003 0.933

L208 0.765 0.079 0.058 0.014 0.762 0.220 0.005 0.932
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Table 3. 

Resulting parameters for the F344s in the Ascending condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 F101 0.715 0.066 0.068 0.020 0.005 0.923

F102 0.887 0.085 0.081 0.025 0.008 0.923

F103 0.919 0.106 0.045 0.018 0.014 0.861

F104 0.781 0.204 0.044 0.040 0.054 0.557

F105 0.635 0.070 0.068 0.024 0.006 0.868

F106 0.507 0.053 0.120 0.038 0.003 0.924

F107 0.683 0.135 0.069 0.044 0.020 0.648

F108 0.705 0.134 0.024 0.019 0.029 0.535

Eq.2 F101 0.682 0.035 0.038 0.005 0.002 0.971

F102 0.846 0.054 0.045 0.007 0.004 0.960

F103 0.892 0.053 0.027 0.005 0.005 0.951

F104 0.785 0.150 0.030 0.016 0.038 0.686

F105 0.610 0.077 0.041 0.013 0.009 0.792

F106 0.493 0.027 0.068 0.009 0.001 0.976

F107 0.592 0.117 0.027 0.015 0.025 0.574

F108 0.693 0.104 0.016 0.008 0.024 0.623

Eq.3 F101 0.684 0.045 0.001 0.016 4.3E+01 7.4E+02 0.002 0.962

F102 0.858 0.068 0.008 0.026 6.040 17.043 0.005 0.949

F103 0.892 0.070 0.000 0.015 4.9E+03 1.4E+07 0.007 0.935

F104 0.785 0.195 0.000 0.050 1.0E+04 1.8E+08 0.051 0.581

F105 0.635 0.086 0.066 0.113 1.027 1.090 0.007 0.824

F106 0.494 0.033 0.002 0.026 35.864 4.8E+02 0.001 0.968

F107 0.718 0.168 0.248 0.675 0.517 0.626 0.025 0.564

F108 0.693 0.142 0.000 0.042 7.3E+03 1.4E+08 0.032 0.497

Eq.4 F101 0.676 0.049 0.014 0.015 1.509 0.331 0.003 0.959

F102 0.846 0.066 0.019 0.020 1.495 0.341 0.005 0.955

F103 0.838 0.069 0.002 0.005 1.841 0.582 0.007 0.934

F104 0.673 0.026 0.000 0.000 11.075 48.710 0.002 0.983

F105 0.625 0.083 0.038 0.056 1.206 0.454 0.007 0.836

F106 0.478 0.024 0.015 0.011 1.806 0.284 0.001 0.983

F107 0.734 0.211 0.183 0.373 0.706 0.576 0.025 0.569

F108 0.591 0.047 0.000 0.000 10.436 1.1E+02 0.009 0.859

Eq.5 F101 0.684 0.050 0.038 0.006 0.987 0.215 0.002 0.962

F102 0.856 0.076 0.045 0.009 0.942 0.243 0.005 0.948

F103 0.847 0.059 0.026 0.004 1.306 0.329 0.005 0.956

F104 0.671 0.023 0.027 4.9E+05 3.9E+01 4.0E+09 0.002 0.987

F105 0.641 0.118 0.038 0.017 0.681 0.342 0.010 0.766

F106 0.486 0.033 0.068 0.009 1.131 0.244 0.001 0.971

F107 0.768 0.292 0.044 0.048 0.454 0.428 0.024 0.583

F108 0.589 0.047 0.016 0.038 8.449 46.172 0.009 0.860
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Table 4. 

Resulting parameters for the LEWs in the Descending condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 L201 0.867 0.073 0.065 0.018 0.006 0.934

L202 0.476 0.027 0.118 0.020 0.001 0.975

L203 0.594 0.032 0.089 0.015 0.001 0.974

L204 0.665 0.081 0.085 0.032 0.007 0.890

L205 0.621 0.061 0.074 0.023 0.004 0.920

L206 0.743 0.090 0.039 0.017 0.011 0.835

L207 0.662 0.052 0.046 0.013 0.003 0.927

L208 0.723 0.066 0.088 0.025 0.005 0.933

Eq.2 L201 0.835 0.019 0.038 0.002 0.001 0.994

L202 0.455 0.013 0.064 0.004 0.000 0.992

L203 0.565 0.016 0.049 0.003 0.000 0.992

L204 0.652 0.038 0.051 0.007 0.002 0.970

L205 0.602 0.020 0.044 0.004 0.001 0.989

L206 0.730 0.049 0.025 0.005 0.004 0.934

L207 0.639 0.022 0.028 0.003 0.001 0.983

L208 0.698 0.019 0.050 0.003 0.000 0.993

Eq.3 L201 0.836 0.024 0.000 0.007 1.2E+03 2.4E+05 0.001 0.992

L202 0.465 0.006 0.025 0.007 3.1E+00 7.6E-01 0.000 0.999

L203 0.577 0.010 0.018 0.008 3.3E+00 1.1E+00 0.000 0.997

L204 0.652 0.048 0.000 0.021 3.4E+03 4.8E+06 0.003 0.959

L205 0.602 0.025 0.000 0.011 2.0E+03 9.7E+05 0.001 0.985

L206 0.730 0.064 0.000 0.017 5.1E+03 1.7E+07 0.006 0.912

L207 0.639 0.028 0.000 0.009 1.1E+03 3.7E+05 0.001 0.977

L208 0.698 0.024 0.000 0.010 1.6E+03 5.0E+05 0.001 0.991

Eq.4 L201 0.803 0.023 0.008 0.004 1.674 0.154 0.001 0.993

L202 0.459 0.005 0.041 0.005 1.398 0.043 0.000 0.999

L203 0.571 0.014 0.032 0.009 1.351 0.095 0.000 0.995

L204 0.606 0.017 0.003 0.002 2.198 0.221 0.000 0.994

L205 0.572 0.009 0.006 0.002 1.841 0.099 0.000 0.998

L206 0.655 0.019 0.000 0.000 2.815 0.448 0.001 0.988

L207 0.608 0.024 0.004 0.003 1.726 0.249 0.001 0.983

L208 0.672 0.028 0.011 0.007 1.698 0.219 0.001 0.987

Eq.5 L201 0.819 0.020 0.037 0.002 1.115 0.086 0.000 0.995

L202 0.468 0.012 0.064 0.004 0.851 0.065 0.000 0.996

L203 0.581 0.015 0.050 0.003 0.860 0.063 0.000 0.996

L204 0.618 0.029 0.052 0.004 1.462 0.239 0.001 0.985

L205 0.582 0.016 0.044 0.002 1.227 0.112 0.000 0.994

L206 0.666 0.030 0.026 0.002 1.952 0.457 0.002 0.976

L207 0.626 0.028 0.028 0.003 1.115 0.165 0.001 0.980

L208 0.684 0.021 0.050 0.003 1.131 0.107 0.000 0.994
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Table 5. 

Resulting parameters for the F344s in the Descending condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 F101 0.798 0.073 0.064 0.019 0.006 0.922

F102 0.981 0.089 0.058 0.017 0.009 0.920

F103 0.878 0.045 0.010 0.003 0.004 0.838

F104 0.105 0.008 0.024 0.006 0.000 0.923

F105 0.326 0.028 0.159 0.041 0.001 0.925

F106 0.250 0.017 0.207 0.042 0.000 0.970

F107 0.301 0.029 0.171 0.050 0.001 0.910

F108 0.136 0.035 0.008 0.013 0.003 -0.045

Eq.2 F101 0.773 0.030 0.038 0.004 0.001 0.983

F102 0.951 0.038 0.035 0.004 0.002 0.980

F103 0.873 0.033 0.008 0.001 0.003 0.894

F104 0.096 0.008 0.013 0.003 0.000 0.840

F105 0.300 0.050 0.078 0.030 0.003 0.719

F106 0.243 0.006 0.106 0.006 0.000 0.996

F107 0.278 0.047 0.085 0.033 0.002 0.720

F108 0.136 0.032 0.007 0.008 0.003 -0.036

Eq.3 F101 0.774 0.038 0.000 0.012 8.4E+02 2.1E+05 0.002 0.977

F102 0.951 0.049 0.000 0.011 9.5E+02 2.9E+05 0.003 0.973

F103 0.873 0.048 0.000 0.016 2.5E+03 1.3E+07 0.004 0.859

F104 0.137 0.053 0.298 0.656 3.7E-01 1.5E-01 0.000 0.952

F105 0.347 0.006 1.484 0.403 0.383 0.029 0.000 0.998

F106 0.245 0.005 0.025 0.015 4.816 2.474 0.000 0.998

F107 0.325 0.023 2.072 2.111 0.364 0.091 0.000 0.980

F108 0.136 0.046 0.000 0.117 1.4E+03 3.6E+07 0.004 -0.381

Eq.4 F101 0.738 0.015 0.005 0.002 1.803 0.123 0.000 0.997

F102 0.907 0.021 0.005 0.002 1.786 0.141 0.001 0.995

F103 0.827 0.015 0.000 0.000 2.277 0.367 0.001 0.978

F104 0.197 0.214 0.471 1.226 0.472 0.300 0.000 0.952

F105 0.414 0.029 0.787 0.171 0.485 0.046 0.000 0.997

F106 0.241 0.002 0.053 0.005 1.590 0.041 0.000 1.000

F107 0.409 0.109 0.991 0.694 0.455 0.131 0.000 0.980

F108 0.289 4.1E+06 1.503 3.6E+07 0.000 -- 0.004 -0.667

Eq.5 F101 0.753 0.035 0.038 0.004 1.176 0.175 0.001 0.983

F102 0.925 0.044 0.035 0.003 1.194 0.187 0.002 0.981

F103 0.829 0.017 0.010 0.001 1.887 0.326 0.001 0.975

F104 0.054 0.024 0.000 2.8E+04 3.909 1.2E+08 0.002 -1.964

F105 0.669 0.158 1.630 2.205 0.190 0.039 0.000 0.996

F106 0.246 0.007 0.108 0.006 0.902 0.082 0.000 0.996

F107 0.768 0.646 6.373 33.334 0.163 0.098 0.000 0.980

F108 0.314 0.074 6.969 -- 0.000 0.004 -0.667
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Table 6. 

Resulting parameters for the LEWs in the Random condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 L201 0.602 0.054 0.034 0.011 0.004 0.826

L202 0.662 0.043 0.026 0.007 0.003 0.911

L203 0.580 0.041 0.027 0.008 0.003 0.873

L204 0.695 0.021 0.041 0.004 0.001 0.986

L205 0.595 0.051 0.011 0.005 0.005 0.608

L206 0.589 0.040 0.042 0.010 0.002 0.925

L207 0.553 0.025 0.009 0.002 0.001 0.831

L208 0.696 0.031 0.019 0.004 0.002 0.929

Eq.2 L201 0.545 0.059 0.016 0.006 0.008 0.678

L202 0.644 0.029 0.017 0.002 0.002 0.946

L203 0.539 0.046 0.014 0.004 0.005 0.763

L204 0.657 0.032 0.023 0.003 0.002 0.951

L205 0.577 0.049 0.008 0.003 0.006 0.547

L206 0.553 0.048 0.023 0.006 0.004 0.844

L207 0.545 0.024 0.007 0.002 0.002 0.818

L208 0.664 0.038 0.012 0.003 0.004 0.853

Eq.3 L201 0.680 0.017 0.693 0.270 0.261 0.032 0.000 0.990

L202 0.644 0.039 0.000 0.012 2.7E+02 5.2E+04 0.002 0.928

L203 0.642 0.021 0.377 0.176 0.283 0.047 0.000 0.982

L204 0.691 0.025 0.031 0.019 1.230 0.524 0.001 0.983

L205 0.733 0.052 4.714 7.910 0.112 0.029 0.001 0.956

L206 0.593 0.051 0.055 0.068 0.839 0.625 0.003 0.903

L207 0.595 0.040 0.222 0.328 0.176 0.095 0.001 0.823

L208 0.733 0.027 0.112 0.068 0.369 0.103 0.001 0.969

Eq.4 L201 0.739 0.030 0.299 0.063 0.454 0.046 0.000 0.994

L202 0.622 0.035 0.003 0.004 1.584 0.388 0.002 0.944

L203 0.671 0.024 0.183 0.045 0.526 0.057 0.000 0.990

L204 0.684 0.024 0.028 0.012 1.115 0.120 0.001 0.986

L205 0.972 0.338 0.635 0.607 0.213 0.104 0.001 0.961

L206 0.588 0.054 0.040 0.042 1.014 0.284 0.003 0.901

L207 0.606 0.047 0.072 0.068 0.530 0.207 0.001 0.866

L208 0.744 0.033 0.070 0.033 0.685 0.113 0.001 0.968

Eq.5 L201 0.815 0.051 0.030 0.007 0.278 0.037 0.000 0.994

L202 0.636 0.043 0.017 0.003 1.083 0.286 0.002 0.930

L203 0.704 0.030 0.017 0.002 0.358 0.042 0.000 0.993

L204 0.697 0.040 0.024 0.003 0.754 0.131 0.001 0.967

L205 1.169 0.670 0.039 0.189 0.120 0.093 0.001 0.963

L206 0.602 0.073 0.023 0.007 0.660 0.240 0.004 0.866

L207 0.610 0.049 0.004 0.002 0.452 0.186 0.001 0.879

L208 0.758 0.041 0.010 0.002 0.514 0.103 0.001 0.964
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Table 7. 

Resulting parameters for the F344s in the Random condition.

Model Rat A SE-A k/a SE-k s/b SE-s Chi-Sqr

Eq.1 F101 0.639 0.026 0.018 0.003 0.001 0.936

F102 0.856 0.017 0.007 0.001 0.001 0.945

F103 0.874 0.023 0.005 0.001 0.001 0.869

F104 0.670 0.030 0.006 0.002 0.002 0.722

F105 0.617 0.047 0.006 0.003 0.005 0.430

F106 0.576 0.050 0.022 0.008 0.004 0.803

F107 0.614 0.048 0.003 0.003 0.006 0.108

F108 0.606 0.035 0.011 0.003 0.003 0.771

Eq.2 F101 0.613 0.032 0.011 0.002 0.003 0.865

F102 0.847 0.019 0.005 0.001 0.001 0.921

F103 0.872 0.020 0.004 0.001 0.001 0.899

F104 0.663 0.030 0.005 0.001 0.002 0.692

F105 0.606 0.045 0.005 0.002 0.006 0.375

F106 0.548 0.046 0.013 0.004 0.005 0.766

F107 0.610 0.047 0.003 0.002 0.006 0.087

F108 0.588 0.036 0.007 0.002 0.004 0.684

Eq.3 F101 0.666 0.027 0.083 0.058 0.402 1.4E-01 0.001 0.961

F102 0.882 0.017 0.059 0.036 0.235 7.2E-02 0.000 0.974

F103 0.872 0.028 0.000 0.016 1.0E+03 3.6E+06 0.001 0.866

F104 0.743 0.037 1.056 1.647 9.1E-02 3.5E-02 0.001 0.870

F105 0.755 0.059 8.289 17.283 0.079 0.019 0.000 0.961

F106 0.616 0.069 0.144 0.240 0.365 0.269 0.005 0.784

F107 1.360 1.6E+04 7.3E+05 1.5E+11 0.056 0.029 0.001 0.852

F108 0.649 0.036 0.172 0.196 2.2E-01 9.7E-02 0.001 0.888

Eq.4 F101 0.674 0.031 0.056 0.031 0.723 0.132 0.001 0.960

F102 0.889 0.018 0.026 0.011 0.688 0.098 0.000 0.978

F103 0.841 0.011 0.000 0.000 2.289 0.469 0.000 0.970

F104 0.785 0.082 0.146 0.125 0.326 0.155 0.001 0.898

F105 1.513 2.158 1.426 3.522 0.113 0.106 0.000 0.959

F106 0.624 0.080 0.084 0.105 0.673 0.304 0.004 0.795

F107 2.7E+03 4.3E+07 4.2E+03 6.8E+07 0.056 0.208 0.001 0.852

F108 0.662 5.5E-02 0.075 7.2E-02 0.552 0.215 0.002 0.857

Eq.5 F101 0.685 0.038 0.010 0.002 0.549 0.122 0.001 0.954

F102 0.892 0.019 0.003 0.001 0.602 0.093 0.000 0.978

F103 0.842 0.010 0.008 0.001 2.062 0.416 0.000 0.972

F104 0.798 0.096 0.001 8.9E-04 0.266 1.5E-01 0.001 0.902

F105 3.051 12.240 6.4E+04 5.6E+06 0.042 0.103 0.000 0.958

F106 0.632 0.090 0.013 0.006 0.517 0.257 0.004 0.805

F107 4.816 78.673 2.0E+11 1.0E+14 0.027 0.216 0.001 0.830

F108 0.673 0.069 0.004 0.003 0.430 0.207 0.002 0.844
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Table B1.

Akaike Weights and Residual Sum of Squares (RSS), using fits of the individuals.

LEW         F344

Asc       w (AIC) RSS    w (AIC) RSS

Eq.1 0.7771 1.0000 1.0000 1.0000 0.0111 0.3484 1.0000 1.0000 1.0000 0.1166

Eq.2 0.2229 0.0169 0.6517 0.0946

Eq.3 5.5E-07 0.0092 5.7E-07 0.0946

Eq.4 1.5E-06 0.0065 2.6E-05 0.0265

Eq.5 1.6E-07 0.0139 2.7E-05 0.0263

Des.

Eq.1 0.0012 0.9997 0.9999 0.9991 0.0186 0.4931 1.0000 1.0000 1.0000 0.0113

Eq.2 0.9988 0.0020 0.5069 0.0112

Eq.3 2.6E-04 0.0020 3.1E-07 0.0112

Eq.4 0.0001 0.0026 1.8E-07 0.0135

Eq.5 8.6E-04 0.0013 1.8E-07 0.0135

Ran.

Eq.1 0.8981 0.99999 0.99999 0.99999 0.0068 0.7223 1.0000 1.0000 1.0000 0.0103

Eq.2 0.1019 8.5E-06 0.0140 0.2777 0.0142

Eq.3 7.9E-06 0.0022 6.2E-06 0.0038

Eq.4 0.0023 3.0E-06 0.0049

Eq.5 5.8E-06 0.0026 2.3E-06 0.0053
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Table B2.

Results of AIC, Weights, and Residual Sum of Squares (RSS) using fits of individuals.        F344

  LEW F344

Asc AIC Δ(AIC) RSS w(AIC) AIC Δ(AIC) RSS w(AIC)

Eq.2 -17.25 0.00 0.0169 1.0000 1.0000 1.0000 -6.90 0.00 0.0946 1.0000 1.0000 1.0000

Eq.3 9.10 26.35 0.0092 1.9E-06 23.10 30.00 0.0946 3.1E-07

Eq.4 7.05 24.30 0.0065 5.3E-06 15.47 22.37 0.0265 1.4E-05

Eq.5 11.57 28.82 0.0139 5.5E-07 15.43 22.32 0.0263 1.4E-05

Des.

Eq.2 -30.15 0.00 0.0020 1.0000 1.0000 1.0000 -19.73 0.00 0.0112 1.0000 1.0000 1

Eq.3 -0.14 30.01 0.0020 3.0E-07 10.27 30.00 0.0112 3.1E-07

Eq.4 1.58 31.72 0.0026 1.3E-07 11.40 31.13 0.0135 1.7E-07

Eq.5 -2.57 27.58 0.0013 1.0E-06 11.40 31.13 0.0135 1.7E-07

Ran.

Eq.2 -18.35 0.00 0.0140 0.9999 0.9999 1.0000 -18.27 0.00 0.0142 1.0000 1.0000 0.99999

Eq.3 0.65 19.00 0.0022 0.0001 3.82 22.08 0.0038 1.6E-05

Eq.4 0.79 19.14 0.0023 7.0E-05 5.27 23.54 0.0049 7.7E-06

Eq.5 1.41 19.76 0.0026 0.0001 5.78 24.05 0.0053 6.0E-06

Asc

Eq.3 9.10 2.05 0.0092 0.2643 0.7748 23.10 7.68 0.0946 0.0216 0.0211

Eq.4 7.05 0.00 0.0065 0.7357 15.47 0.05 0.0265 0.9785

Eq.5 11.57 4.52 0.0139 0.2252 15.43 0.00 0.0263 0.9789

Des

Eq.3 -0.14 0.00 0.0020 0.7021 0.2288 10.27 0.00 0.0112 0.6375 0.6375

Eq.4 1.58 1.71 0.0026 0.2979 11.40 1.13 0.0135 0.3625

Eq.5 -2.57 -2.43 0.0013 0.7712 11.40 1.13 0.0135 0.3625

Ran

Eq.3 0.65 0.00 0.0022 0.5172 0.5940 3.82 0.00 0.0038 0.6745 0.7279

Eq.4 0.79 0.14 0.0023 0.4829 5.27 0.14 0.0049 0.3255

Eq.5 1.41 0.76 0.0026 0.4060 5.78 0.76 0.0053 0.2721

Asc

Eq.4 7.05 0.00 0.0065 0.9054 15.47 0.05 0.0265 0.4943

Eq.5 11.57 4.52 0.0139 0.0946 15.43 0.00 0.0263 0.5057

Des

Eq.4 1.578 4.15 0.0026 0.1118 11.40 0.00 0.0135 0.5000

Eq.5 -2.57 0.00 0.0013 0.8882 11.40 0.00 0.0135 0.5000

Ran

Eq.4 0.79 0.00 0.0022 0.5773 5.27 0.00 0.0049 0.5635

Eq.5 1.41 0.62 0.0023 0.4227 5.78 0.51 0.0053 0.4365


